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Abstract

It is shown that a natural bt aseful goneralisation of Jafle's mathematical results con-
cerning strict locelisability is jeai an easy consequence of Gelfand’s and Shilov's work on
spaces of ‘type S”. Furthermore, proof is given Tor the statement that there is no minimal
space of test functions with compact support, whereas every sountzble intersection of
zuch spaces also contains test functions with compaci support,

1. Introduction

H is weill known that fields have to be treated as operator-valued general-
ised functions, i.e. ficlds have to be smeared with sufficiently smooth test
functions in order to yield proper operators. Although one usually assumes
a field to be an operator-valued fempered distribution, this is a matter of
convenience rather than of conviction. Indeed, there are several hints (see
Jaffe (1967) and references given there) indicating that classes of test
functions smaller than & have to be used for physically relevant theories
in order to allow the off-mass-shell vacuum expectation values in momen-
tum space to grow faster than any polynomial. This means we have to
-postulate some sufficiently rapid decrease at infinity for our test functions.
in momentum space. However, in order to still be able to formulate local
commutativity, the question arises whether test functions exist with
compact suppori mlﬁﬂéng the postulate of rapid decrease In mwnmentum
space.

This problem has been treated most successtully by Jaffe (1967), who
showed that for an entire ‘mction of the form

g(t*’)r—icz;:z’; >0, 6,20 a.n
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the necessary and suflicient condition for the exisience of an element
F of (R ) fulfiliing { f= & §, & : Fonvier-tromsformation)

if 8\ FR)
i ’.—Ai ' 2 i +=§ ’!Ezﬂ (m} .a.{,“) 2 "1,2
Hup gl pIPy @+ 12 L5 e 5 f(p)lf;m (1.2}

for every set of non-negative iniegers 4, », my, ..., 71 is given by

=0

-
{ i‘:’_&fﬁldt <w (1.3)

o &,

It us denote the class of all fe (R, Ruifilling (1.2) by €(R,) and its
one-dimensional variant by €,(R,).

Recently, new interest in the Jaffe class of strictly localisable fields, i.e,
fields defined over some @,(R,) with g according 1o (1.1) and (1.3), arose
in connection with uon-polynomial Lagrangian ficld theories (Lehann &
Pohlmeyer, 1971 ; Isham ez @i, 1971). There is no doubt Jaffe’s concept of
“strict localisability’ is of the greatest imporiznce. Thersfore the fest
function spaces of Jaffe's class should, at last, be treateid in the framework
adequate to thern . the Gelfand-Shilav theory of spaces of type 8. This is,
betudss snme gencralisations, the main purpose of the present paper. it
sheds seme light into the mathematical concept of the Jaffe class and
sertatnly makes work within this class easier.

2. Formulnsion of the Maihematival Problem and Results

A. In order 16 derive Jafe’s resuits in an even more general form it is
quite sufficient to iveat the following simplified problem:

Determine the necessary and sufficient conditions on a non-dacreasing
positive function.g {defined over [0,4=)) for the existence of an element
fe @ the Fourier iransform = & f of which fulfils the inequalities:

te((e]y S @) <C, for everyreR; and for svery non-
negative integer g; C, being a suitable function of ¢ (2.1}

For-purely technical reasons we restrict ourselves to such functions g,

which have the property: ‘

For every positive integer n there is a positive numberm, such

that the fuuction 1" g{¢} is non-increasing over {&,m,] and

non-decreasing over [m,, o} (2.2}
Note, however, that this restriction is weaker than Jaffe’s restriction (1.1},
since we are only interested in the non-trivial case g € &5, A function of
type (2.2) but not of type (1.1} is, for instance,

(1) =s,(1) = exp ([¢]9) 23
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We denote the ciass of all non-decteasing positive functions g {dtﬁniad
over [0, +}) with property (2.2) by % and the class of all functions fe &
fulfiiling 2.1} by o, (o, in more detail, of ). Furthermore we use the
‘notation
5’:,;{"-”"5{\ },M,@m Fos=FF o s Loo=FNF .
A subset A of & is colled non-trivial iff there is 2 function f'e 4" which
does pot vanish identically. The ‘extended Jaffe class’, thexn, is the class of
all countable intersections  of spaces ¥, . (g€¥%, 4> 0) such that
B N 1 nonsrivial. Indeed, the extended Jaffe class contains the Yaﬁ”e
tlass
{%,|2 N ¢, nop-trivial}
becanse
«
Eo= 1 Fadraete
o, Wl . -
B. Since & {1 Fof, is non-trivial if and only if &, , is non-trivial for
_4 >0, the solution of sur problem is givenby:—~ ~ =

Theorem 1: Let g be an element of % and st A be & poshive consiant,
Then 2,, 4 is non-trivial if and only if

Togg(t)
[ < @4

This theorem immediately gives 1iv2 10 the Tollowing question: “Is there
any maximal! g € ¥ for which (2.4} holds? The correct answer is ‘no’:

Lemma I: Let g, g5,... be a sequence of elemems of ¢ fulfilling (2.4).
Then there is an entire g € ¥ which fulfils (2.4) and:

lim g, {r)/g{t) =0 fork=1,2...
trtx

- While this lemma shows that every countable intersection of non-trivial
spaces Z, 4 (g€ ¥, A > 0)is non-trivial, the intersection of all non-trivial
spaces 7, ,{g€¥, A>0)is trivial: :

Theorem 2: Let f€ @ be a function that does not vaaish identically.
Then there is a function g ¢ ¢ fulfilling (2.4) such that f¢ 2, ,

C. The results listed in B allow the following conclusions:

Corodlary 1: The extended Jaffe class is the set of all countable inter-
sections of spaces &, 4 with g € ¢ fulfilling (2.4) and 4 > 0.

Corollary 2: There is-no minimal (in the set theoretical sense) & within
the extended Jaffe class. '
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3. Proof of Theorem |
- A. By # wr denote the class of all entive g € € of the form
g =3 ats 630, 6z, r=DL%.. @I
- R
Now let g be some element of %", Under this condition 2 function fe &
belongs tv &, 4 and onlyif:

it" 70| < Coollj4+ 68 /e, foreveryze R, everyd > 0,
and for all non-negative integers %, g; C, ; being a suitable
fonction of gand & 3.2}

Tn other words, &, , is a special space of type § (see Gelfand & Shilov
(1964)). Therefore we already know from Gelfand & Shilov (1964) how to
managethe proof of Theorem 1. Allwe haveto dois 1o derive the following:

Lemma2: Leifbeanelementef (andge#). ffed, ,tnen

N I®Ey < CL 4+ 8 Loy, for every r £ Ry, every
é > 0,and farevefymiegﬁrk C, being a suitable function of 3 33

holds with r = 2. Conversely, if (3.3} holds forn=0then fe &, .

Proof: Forevery fe & we have the inequality

sup| fOW)] S @2 failit S W) F=F1

s;.:,

In the spemal case f€ 9, . this implies ‘
\AA)"‘*ZCHJ supgf“‘”f}I £ FmQW)“Z‘*‘fa‘rf“Q 2 A () < o

for A €(0,1) and hencs the first staten
Cenversely, iet us suppose that {
and - -

e Fo1] = z(’;‘) I:f‘}“’f““"’{t)é S (g Dk max i 74|
i ¥ i

=0}
we even have
[ f (OI®] < CL(1/A + 8 Ve, forevery te Ry, every §>
0, and for all non-negative integers &, g; C, 5 being a suitable
function of g and &

nent of Lemma 2 is proved.
3.3} 15 Fulfilled for n=0. Since fe @

and hence
@ suplet o) 5 f d| {tﬂ FOI®] £ DC,,(1/4 + <1 /c,

where D denotes the diameter of supp jl Thxs is already (3.2). L.e. the second
statement of Lemma 2 is proved, too.
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Let us note, by the way, thai this proof also shows that a function fe @
already belongs to @, , if its Fourier transform = & f fuifils:

‘max|Pgli ()] <w  forbe(0,A)

~ Now, according to 3 theorem of Carleman and Ostrowski (see Gelfand
& Shilov {1964) and reference given there} A& necessary and sufficient
condition for the existence of a function Fe g fulfilling (3.3} is:

: J’lgg_;l’;(_t) dt<® 3.4)
l .
where I, denotes the *Ostrowski function’, defined by
Ffty=masi i 121
3

Thai (3.4} it indeed equivalent to 2.4) is shown by the foliowing inequalities
(valid for ¢ > G}:

T i) =7 maRe,. . 72 7805

- “F- et
B= 32T 2 3 eolt2F =il gl -3 %{:fz}f}
= = I 5

“Thus Theorem 1 is proved fo{ggtxfe g of the type (3.1} .

B. Let g be an arbitrary element of ¥ and m, (n=1,2,...) the corre-
 sponding seguence defined by (2.2). Then the first thing to notice is that
this sequence is non-decreasing and unbounded. On the other hand we
have

gy S (tfmy*igm)  form, 1Sy,
) gl) z (t/my'gm,)  forze(0,4w) n=12,..)
Thus, if we define
' o=2(0); o =gm)(my. n=12,...

g0 =3 e,

YO

and

we get the inequalities:

(1 = DB S () S [g(m)/g(0) + t/m, 16(0) + colrms
fortel0, +ee) and (@,

Smce both functions, on the right and on the left of g(¢), are elements of
# (it is for this reason that ¢,/m; is added on the right} we see that

Crn o traivp e &

Theorem 1 is also valid for axbiuzuy €5,
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C. As a by-product of the proof for Theorem 1, outlined in sections 4
&nd B, we have the following:

Lemma 3: Let g be an element of & and let A be a positive constant,
Then @, , is non-trivial if and only if there is 5 function fe 2 with 2
Fourier transform f fulfilling (2.1} for g fixed lo g = 0.

4. Proof of Lemma 1

In section 3B we have seen that for every § € %, fulfilling (2.4), there is
an entire g € #7, fulfilling (2.4) with

Hiygsglry fori>0
Hence i1 is sufficient 1o prove Lemma 1 for g, € #'. Then
=13 agl)+a; Toriek @1
- &=l
defines ap cutire g £ % with the desired property
Hm g f¥p(t)=0 fork=1L12%...
=t

if the sequence a;, @,,... is non-increasing, positive and of sufficientiy
rapid decrease; for example:

C O<a S [klgI s pyy 2455 k=12,... @2
Since :
Fm !‘ iog {g;!t} —t-‘égz(t)} di = J‘ fog ézix(’) gt
Et0 2 i
1

for every two functions &, § ¢ # fulfilling (2.4), we may impose the
additional restrictions

wiog‘?a 21 x
J A< k=12 (4.3)
i

on the sequence dy. da,.... Then the restrictions {4 3) and (4.2} guarantee
that g, as defined by (4. 1} is an element of ¥ fulfiliing (2. 4‘ Thus Lemma |
is proved.

5. Proof of Theorem 2
Letfed be a function that does not vanish identically, Then

a, zmaxsup gf'(i 5.1}
g fé-gg
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define: a non-decreasing sequence of pesitive numbers ag, 4;, .. .. Gelfand
& Shilov {1964} have shown that @ 1 £ is trivial (see also their definition
and properties of $1). For fthis means:

fP 96 forevery B> 0

2 -2
Therefore, if we define recursively
=1/a,, & =min[l/a,, € kY 5%
we have :
maxea,=1, g=12... ¢3)
. 32
and bence: ‘
) limé,%@a,a 8 forise(d 1) 5.4

While (5.2} tells vs that
w
gty =2 cpt*
| Ewb

is an element of ¥, we cenclude from (5.4) that (3.3) is valid for n=—=0
and A=11e.:
- fe2, .

Thus, by Theorem 1, g fulfils (2.4). Consequently s« get an entire § & ¥
fulfilling (24) if we define '

)
E0y=2&1%  1ER
omr
50:61:52=60; 5&-&2*‘3&; k¥0,1§2,...

and, according to Theorem |, 2, , is non-trivial. But {5.3) and (5.1) show
that

[ <Clf2-+6)%21.5,., foreveryrek,, every 6 > 0,

and for every integer k; C, being 2 suitable function of §

is not valid. Hence, by application of Lemma 1 {first statement), weo see

that
) f€9D,,,
Thus Theorem 2 is proved.

6. Discussion
A. To give an illustrative example for the application of our results, Ist

us note that (in the Gelfand-Shilov notation (1964)) §%* = 5, ; is in the
extended Jaffe class for f> 1 and that the space ¥(XK,), as introduced by
Jaffe in 1966, is just the intersection of all $#+t with # > 1. Hence Corollary 1
tells us that ¥(R,) is in the exiended Jafle class.
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Another application is the following: Suppose

3 e.699)
B

16 be a generalised function over some €, of Jaffe’s class. Then there is 2
non-trivial f & @ N €, for which we may conclude:

>3 [/ /PO = L% el max (< 0]

2 S le)max] f (f+ PO e dr' | D
Yrll ‘ H I

teR,

=@ Dt o) max T 7Ys)

ot B VSEK

4
zZ @y Dt ma -% FEOPRES £~’§
- 4

fad

where I dendfes the finite diameter of supp S+ /. Hence, by Lermma
and Theorem 1,
@
g(tz):' z !Cv! 12
F=0
defines anetive fnction of type (1.3). Thisargument providesthe substance
for Lchmann’s and Pohlmeyer’s definition of ‘minimally singular’ super-
‘propagators in nop-polynomial Lamanclan field theory (Lehmann &
Pohlmever, 1971}

B A:zheugﬁ in the presen: work we have considered the one-dimen-
sional case only, generalisarion to the n-dimensional case {# > 1} is guite
easy {Jafle, 1967). Furtharmore, since he @ and fo ¥, imply 4 s«f‘ €%,
it is a consequence of a distributicn theorstical stan iard argument that
every space €, of the Jaffe class is dease in 2. Thus it is justifiable to say
that our results are more general than Jaffz's,

C. As far as the physical applications are concerned, there are several
thingsto wxmprovedm]affe 1966 and 1967, Forexampw Jaffe’s definition
of strict localisability is not related to the topological siructure of the test
function space, whereas oqe should (without rnduuna the class) po:tuiate

& N %€, to be dense in %¥,. An unpleasant feature of the Jaffe class is, for
instance, that the IaCk cf Fourier symmetry implies that there are no
-Loreutz—xma“adt muitipliers in €,(R) (g ¢ Os;) other than pelvnomxa!s.
Hev»e‘ver, all these questions will be the subject of a forthcoming paper
(Liicke, in pgcparktxon}
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